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Chemometrics
Application Note

Mycobacteria include a number of respiratory and
non–respiratory pathogens for humans, such as M.
tuberculosis, the causative agent of the disease for
which it is named. Identification of the respon-
sible bacterium is, therefore, a critical first step in
public health regulation or medical treatment.

Traditional methods have relied on classification
based on morphology and enzymatic tests, which
are subjective and can be time-consuming (typical
turnaround from sample collection to results is
measured in weeks). Recently, it has been demon-
strated that the fatty acids of the cell walls of these
bacteria are diagnostic for some species (1). These
fatty acids are mainly comprised of high molecu-
lar weight (C70–C90) α-branched, β-hydroxy
mycolic acids, which, due to their involatility, are
not as amenable to gas chromatographic proce-
dures. However, liquid chromatography of these
mycolic acids can be utilized (2), and such an
approach can provide a more rapid and reproduc-
ible method for the identification of target species
of Mycobacteria.

In this note, chromatographic results from the
HPLC method are analyzed with chemometric
methods. Principal Components Analysis is shown
to aid in visual classification and determination of
the presence of outlying or aberrant samples.
Predictive models were built for use in rapid,
routine classification using the K-Nearest Neigh-
bors approach and SIMCA, the latter based on
principal component models of individual classes.

Experimental

All laboratory work was performed at the Centers
for Disease Control, in Atlanta, GA, where an
extensive project is underway to perfect the clas-
sification system. The goal of the CDC work is to
optimize the speed of analysis without sacrificing
accuracy of classification.

Prior to chromatographic analysis, samples were
derivatized to facilitate their detection. Samples
were first prepared by basic saponification, then
an acidic extraction, using CHCl3, isolated the
mycolic acids. Derivatization followed, convert-
ing the analytes to their p-bromophenacyl esters.

A Beckman System Gold HPLC instrument was
used to analyze the resulting esters, using a 3 µm
C18, 4.6 mm x 7 cm cartridge column to separate
the analytes. The mobile phase was applied in a
gradient, running from 80% CH3OH in CH2Cl2,
to 35%, during 10 minutes, with detection at 260
nm. Of the peaks which eluted, 22 were integrated
and stored in a results file for later multivariate
analysis. Figure 1 is representative of the results of
the chromatographic method, showing some of
these peaks. The Infometrix Pirouette software
was used to perform the pattern recognition and
classifications.

Figure 1.
Representative
chromatogram
showing distribution
of mycolic acids.
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Results and Discussion

In all, some 50 different Mycobacteria species are
under study. The mycolic acids which elute under
this chromatographic regime occur throughout
the 10 minute gradient window. However, main
peak clusters can be observed for the majority of
species, with two significant clusters occurring
from 5 to 7 minutes and from 7.5 to 9 minutes.
Those species which exhibit significant peaks in
only the latter cluster are referred to as the Single
Cluster species and are the focus of this note.
Two data sets containing only single cluster
samples were combined to determine the feasibil-

ity of a pattern recognition approach to classifica-
tion. Represented in these combined data were
examples of the eight species listed below, for a
total of 188 samples analyzed.

M. asiaticum M. bovis, BCG
M. gastri M. gordonae
M. kansasii M. marinum
M. szulgai M. tuberculosis

Exploratory Data Analysis
Two multivariate methods, Hierarchical Cluster
Analysis and Principal Components Analysis, were
utilized to provide an overview of the distinguish-
ability of species, based on the chromatographic
data. In the clustering method, samples are
intercompared based on their multivariate dis-
tances in a 22-coordinate space (each coordinate
axis corresponds to one of the variables or chro-
matographic peaks). Following PCA, the sample
points in 22-space are transformed to a new data
space: the new coordinates, the principal compo-
nent axes, are determined as those which contain
the most variance (information) in the data set.
Axes which represent mostly noise can be ig-
nored, resulting in a reduction in the dimensional-
ity of the data.

These transformed data projections, referred to as
scores (see Figure 2),
showed that two species
formed into distinct clus-
ters; another two species
could be distinguished
clearly. Samples of the re-
maining four species were
somewhat overlapped.

The results from HCA can
best be viewed in a den-
drogram, as that in Figure
3. Here, we can see that
good separation is pos-
sible, and in most sub-
branches, the species
present were homoge-
neous. In fact, only 2
samples appeared in sub-
branches to which they
did not clearly belong.
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Figure 3.
HCA dendrogram for
188 Mycobacteria
samples
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Figure 2.
PCA scores of
Mycobacteria samples
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Classification Analysis
A general approach for pattern recognition is to
develop a reliable training set from which predic-
tions of the classes of unknown samples can be
accomplished. For this note, an evaluation was
first done with the K-Nearest Neighbors method.
In this method, the prediction of the class of an
unknown or test sample is obtained by observing,
in the 22-space defined above, the class of its
nearest neighbors in the training set.

The first goal of KNN was to determine if outliers
were present in training set. One of the two com-
bined sets was designated as a training set (84
samples), with the other as a test set (104 samples).
No significant outliers were found, therefore, KNN
was repeated to predict the class of the second set.
Because in this set the actual species were already
known, it was used to validate the model devel-
oped during the training step.

Six samples were incorrectly classified: samples
of M. kansasii were classified as M. szulgai. If
many samples of a single species are misclassified,
one should not necessarily assume that they are
“bad” samples. Such a situation merits closer
inspection to understand the cause. In Figure 4, the
misclassified samples were highlighted so that
they might better stand out in the scores plot. This
3D view of scores was rotated to best view the
misclassified samples with respect to the other
neighboring samples.

From this view, it is clear why these samples
were missed—there is a subset of M. szulgai
samples that are definitely closer to the
misclassified samples than are the remaining M.
kansasii samples. To probe deeper, another data
subset was created which contained only

samples of these two
overlapped species, and
the exploratory algorithms
were run once more.

In the dendrogram (Figure
5), the data points appear to
cluster in 5 groups—two of
M. kansasii and three of M.
szulgai. Questions arise
whether these two species
are truly homogeneous. But
other considerations include
whether there are simply
enough samples to ad-
equately characterize the
intra-species variation, es-
pecially if the samples are
found to be properly identi-
fied by independent means.

Figure 4.
PCA scores plot
highlighting six
misclassified samples
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Figure 5.
Dendrogram showing
subclustering of
M. kansasii and
M. szulgai samples
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Figure 7.
Discriminant view
separating
M. kansasii and
M. szulgai

In the scores plot of these two species (Figure 6),
the subclustering is clearly evident. However, by
careful manipulation of the 3D view, a perspective
can be achieved in which the two species might be
separated by a linear discriminant. Such a view is
given in Figure 7.

This implies that including specimens from each
of the three subclusters in a training set might
improve the prediction quality.

Thus, a new training set was created from among
all of the species, but now including representa-
tives from each of the subsets of M. kansasii and
M. szulgai samples. This new training set of 65
samples was evaluated with KNN by predicting
the species of all of the remaining samples. In this
instance, 100% of the samples were correctly
assessed.

Conclusions

From the results derived with this preliminary
study, we can conclude the following:

Pattern recognition can be used on HPLC data
to rapidly classify Mycobacteria to species
and perhaps to strain within a species.

The algorithmic classification process can be
automated by implementation into an instru-
mental method, removing operator depen-
dence and therefore the subjectivity.

Information can be derived which is not obvious
from the traditional approaches or even from
a casual examination of the chromatographic
profiles (as in the distinction of subclusters
within M. kansasii and M. szulgai).

The M. kansasii and M. szulgai mixup also
points out the importance of having a repre-
sentative set of samples in the training set
prior to predicting unknown species.
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Figure 6.
PC scores of
M. kansasii and
M. szulgai showing
subclusters of each
species


