Agenda of Presentation

- Background on Mycobacteria
- Chromatography and alignment
- PCA and stages of analysis
- Classification results
- Discussion
- Conclusions
Background

- Tuberculosis has re-emerged as a global public health issue
- As much as 1/3 of world population may soon be infected
- Infection by drug-resistant strains is increasing
- HIV prevalence increases incidence of TB
- Infection by multiple strains of TB and/or by multiple species
- Concerns with respect to MOTT (Mycobacteria other than TB)
Mycobacteria Analysis

- Traditional
 - Biochemical tests
 - Laboratory options
 - Subjective interpretation
 - Time and cost

- DNA Probes
 - 16s RNA
 - Very selective and accurate
 - Only selected strains

- Chromatography
 - Mycolic acids - specificity
 - Variation in chain length and constituents
 - Some species indistinguishable

Mycolic Acids:
\[
\begin{align*}
\text{O} & \quad \text{OH} \\
\text{R}_1 \quad \text{O} \quad \text{R}_2 & \quad \text{OH}
\end{align*}
\]

\[\alpha\text{-branched, } \beta\text{-hydroxy long chain fatty acids}\]
Chromatography for Mycobacteria Analysis

- TLC
 - First
 - Lack of automation

- GC
 - Rapid, reproducible, good resolution
 - Ignores Mycolic acids (60-90 carbons)

- HPLC
 - Species specificity
 - Adequate resolution
HPLC

- Rapid analysis
- UV or Fluorescence detection

- Peak heights/areas
 - Needs internal standards
 - Peak ID table transfer

- Whole chromatograms
 - Data rate
 - RT reproducibility (needs alignment)
 - File format
Chromatographic Data

- Data Source - HPLC Mycobacteria Users Group round robin study (5 laboratories)
 - Data from one lab, 322 samples in 23 strains
 - Data exported into CDF format from Agilent LC
 - Whole chromatograms imported into KnowItAll®, stored as database

- Processing in KnowItAll 7.5 (Bio-Rad) and in Pirouette® 4.0 (Infometrix)
Mycobacteria Chromatogram
Diagnostic Region of Mycolic Acids

M. tuberculosis
Single Cluster, Late Eluting

M. kansasii
Double Cluster, Early Eluting

M. nonchromogenicum
Double Cluster, Mid and Late Eluting

M. avium
Similar Species

M. avium
M. intracellulare
Similar Species

\[M. \text{ terrae} \]
\[M. \text{ nonchromogenicum} \]
Species Variation

M. kansasii
Principal Components Analysis

- Analyzelt™ MVP (KnowItAll)
 - Time range restricted to 4.0 to 9.0 minutes
 - Vector-length normalization
 - Mean centering
- Results
 - Some clusters have large spread
 - Similar species pairs too far apart
Alignment targets are category medians

Medians aligned first using internal standards

Correlation Optimized Warping (LineUp™) for final alignment

Example: *M. tuberculosis* profiles
Principal Components Analysis

- Aligned profiles
- 11 outliers removed
- Processing
 - Time range restricted to 4.0 to 9.0 minutes
 - Vector-length normalization
 - Mean centering
- Similar species
 - *M. chelonae*, *M. abscessus*
 - *M. malmoense*, *M. simiae*
 - *M. fortuitum*, *M. peregrinum*
 - *M. xenopi*, *M. celatum*
 - *M. terrae*, *M. nonchromogenicum*
 - *M. avium*, *M. intracellulare*, *M. scrofulaceum*
PCA on Subgroup

- 7 species appear in one cluster
- New subset created
 - Highlight samples of interest
 - Convert to Hit List
 - Pass to Analyzelt MVP
- PCA conditions same as prior analysis
PCA on Subgroup of Subgroup

- 3 strains in one cluster
- New subset created and analyzed
- PCA, same conditions
Multivariate Decision Tree
Classification Methodology

- KNN, SIMCA, PLS-DA models evaluated
 - KNN – evaluate up to 10 neighbors
 - SIMCA – one PCA model for each category
 - PLS-DA – one PLS model on a binary Y for each category
- One model (per algorithm) created at each node in decision tree
- Predictions run in Pirouette or in KnowItAll
 - KNN – consensus of nearest neighbors
 - SIMCA – class residual < threshold
 - PLS-DA – predicted Y > 0.5 and X residual probability < threshold
Model Validation in KnowItAll

Results Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Supplier</th>
<th>Data Set</th>
<th>N</th>
<th>Accuracy</th>
<th>False Positive</th>
<th>False Negative</th>
<th>Indeterminate</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIS:SIMCA</td>
<td>Infometrix, Inc</td>
<td>All Data</td>
<td>39</td>
<td>92.3%</td>
<td>5.1%</td>
<td>7.7%</td>
<td>2.6%</td>
<td>92.3%</td>
<td>96.8%</td>
</tr>
<tr>
<td>M. avium</td>
<td>Infometrix, Inc</td>
<td>All Data</td>
<td>13</td>
<td>84.6%</td>
<td>0.0%</td>
<td>15.4%</td>
<td>0.0%</td>
<td>84.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>M. intracellular</td>
<td>Infometrix, Inc</td>
<td>All Data</td>
<td>15</td>
<td>93.3%</td>
<td>5.1%</td>
<td>6.7%</td>
<td>0.0%</td>
<td>93.3%</td>
<td>91.7%</td>
</tr>
<tr>
<td>M. scrofulaceum</td>
<td>Infometrix, Inc</td>
<td>All Data</td>
<td>11</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Y-Randomized</td>
<td>Infometrix, Inc</td>
<td>All Data</td>
<td>39</td>
<td>25.6%</td>
<td>71.8%</td>
<td>74.4%</td>
<td>2.6%</td>
<td>25.6%</td>
<td>62.5%</td>
</tr>
</tbody>
</table>

Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>M. avium</th>
<th>M. intracellular</th>
<th>M. scrofulaceum</th>
<th>No Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. avium</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. intracellular</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M. scrofulaceum</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Unmodeled</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data Table

<table>
<thead>
<tr>
<th>#</th>
<th>Chromatogram</th>
<th>Actual</th>
<th>MAIS:SIMCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hue</td>
<td>M. avium</td>
<td>M. avium</td>
</tr>
<tr>
<td>2</td>
<td>Hue</td>
<td>M. avium</td>
<td>M. avium</td>
</tr>
<tr>
<td>3</td>
<td>Hue</td>
<td>M. scrofulaceum</td>
<td>M. scrofulaceum</td>
</tr>
<tr>
<td>4</td>
<td>Hue</td>
<td>M. scrofulaceum</td>
<td>M. scrofulaceum</td>
</tr>
</tbody>
</table>

Database Data

Database: MAPSTX, Record ID: 183
Classification Results

- Divide each category into training (167 samples) and evaluation (143 samples) subsets*
- Make classification models on set of all training samples and on the 6 subgroups in the decision tree
- Predict on the corresponding evaluation sets
- Qualify results at p < 0.05

Success rate, as fraction correct:

| | TB | AV | IN | SC | GO | G2 | KA | TE | NO | XE | MR | MU | ML | SI | SZ | BC | AS | GA | CE | FO | PE | CH | AB | Total |
|-------|------|
| KNN | 1.00 | 0.63 | 0.75 | 1.00 | 1.00 | 1.00 | 0.75 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | **0.93** |
| SIMCA | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | **0.99** |
| PLS-DA| 1.00 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | **0.99** |

| | TB | AV | IN | SC | GO | G2 | KA | TE | NO | XE | MR | MU | ML | SI | SZ | BC | AS | GA | CE | FO | PE | CH | AB | Total |
|-------|------|
| KNN | 1.00 | 0.60 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | **0.98** |
| SIMCA | 1.00 | 1.00 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 0.60 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | **0.97** |
| PLS-DA| 1.00 | 0.80 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.60 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | **0.98** |

Species Complexes

With PCA, could not totally separate samples from strains in so-called MAIS cluster, containing
- *M. avium*
- *M. intracellulare*
- *M. scrofulaceum*

Pathology and treatment do not differ
Maintain as a single group

Other complexes
- *M. chelonae, M. abscessus*
- *M. fortuitum, M. peregrinum*
- *M. terrae, M. nonchromogenicum*
Results

- With exception of *M. terrae* samples in KNN, modeling success was > 99% across all samples
- All algorithms produced the same success rate in prediction, > 97%
- If instead of ID to species, use complexes (where relevant), success rate was 100%
Considerations

- Previous work with Peak Heights
 - Processing essentially the same among vendors, relatively easy for technician
 - Complexity in establishing reliable peak ID tables among different laboratories
 - Different peak finding and integration among software vendors
 - May miss diagnostic peaks

- Current work with whole Profiles
 - No peak ID table needed
 - Chromatographic alignment mandatory; may require external software
 - Variability in solvent programs among laboratories
 - Captures nuances in profiles that do not qualify as peaks
Conclusions

- Combination of informatics database and chemometrics toolkit offers several advantages
 - Simple storage and mining of chromatographic profiles in a single database
 - Quick PCA tool for characterizing differences among samples in a data subset
 - Easy transfer of hit lists to external program for intensive multivariate modeling
 - Whole profile analysis as reliable as and can replace analysis of peak height data
Acknowledgments

- HPLC Mycobacteria User’s Group
 - Standardized Method for HPLC Identification of Mycobacteria
 - Mycolic Acid Pattern Standards for HPLC Identification of Mycobacteria

http://www.cdc.gov/nchstp/tb/Laboratory_Services/Liquid_Chroma.htm